Unique fixed point theorems for α–ψ-contractive type mappings in fuzzy metric space
نویسندگان
چکیده
منابع مشابه
Fixed point theorems for α-ψ-ϕ-contractive integral type mappings
In this paper, we introduce a new concept of α-ψ-ϕ-contractive integral type mappings and establish some new fixed point theorems in complete metric spaces.
متن کاملFixed Point Theorems for kg- Contractive Mappings in a Complete Strong Fuzzy Metric Space
In this paper, we introduce a new class of contractive mappings in a fuzzy metric space and we present fixed point results for this class of maps.
متن کاملFixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space
In this paper, we shall establish some fixed point theorems for mappings with the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...
متن کاملMeir-Keeler Type Contraction Mappings in $c_0$-triangular Fuzzy Metric Spaces
Proving fixed point theorem in a fuzzy metric space is not possible for Meir-Keeler contractive mapping. For this, we introduce the notion of $c_0$-triangular fuzzy metric space. This new space allows us to prove some fixed point theorems for Meir-Keeler contractive mapping. As some pattern we introduce the class of $alphaDelta$-Meir-Keeler contractive and we establish some results of fixed ...
متن کاملOn Fixed Point Theorems for Contractive-type Mappings in Fuzzy Metric Spaces
In this paper, we provide two different kinds of fixed pointtheorems in fuzzy metric spaces. The first kind is for the fuzzy$varepsilon$-contractive type mappings and the second kind is forthe fuzzy order $psi$-contractive type mappings. They improve thecorresponding conclusions in the literature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016